Performance Analysis of Epileptic Seizure Detection Using DWT & ICA with Neural Networks

نویسنده

  • M. Stella Mercy
چکیده

The electroencephalogram (EEG) signal plays an important role in the detection of epilepsy. The EEG recordings of the ambulatory recording systems generate very lengthy data and the detection of the epileptic activity requires a timeconsuming analysis of the entire length of the EEG data by an expert. The aim of this work is compare the automatic detection of EEG patterns using Discrete wavelet Transform (DWT) and Independent Component Analysis (ICA). Our method consists of EEG data collection, feature extraction and classification stages. DWT & ICA methods are used for feature extraction in the principle of time – frequency domain analysis. In classification stage we implement SVM & NN to detect epileptic seizure. Nural Network provides binary classification between preictal/ictal and interictal states. The study is carried out on EEG recordings of two epileptic patients; two classification models are derived from each patient. The models are then tested on the same patient and the other patient, comparing the specificity, sensitivity and accuracy of each of the models. Index terms — Discrete Wavelet Transform (DWT), Independent Component Analysis (ICA), Support Vector Machines (SVM), Electroencephalogram (EEG).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

Classification and Clustering of Brain Seizure Activity Using Wavelet Trans-form and Radial Basis Neural Network

Electroencephalogram (EEG) is the record of the brain electrical activity and it contains valuable information related to the different physiological and pathological states of the brain. Epilepsy is known to be the most prevalent neurological disorder in humans and seizure discharge is the main characteristics of the epilepsy. EEG is an important clinical tool for the diagnosis and monitoring ...

متن کامل

Classification of EEG Physiological Signal for the Detection of Epileptic Seizure by Using DWT Feature Extraction and Neural Network

EEG (Electroencephalogram) is a technique for identifying neurological disorders. There are various neurological disorders like Epilepsy, brain cancer, etc. Feature extraction and classification of electroencephalogram (EEGs) signals for (normal and epileptic) is a challenge for engineers and scientists. Various signal processing techniques have already been proposed for classification of non-l...

متن کامل

Convolutional Neural Networks for Real-Time Epileptic Seizure Detection

Epileptic seizures constitute a serious neurological condition for patients and, if untreated, considerably decrease their quality of life. Early and correct diagnosis by semiological seizure analysis provides the main approach to treat and improve the patients’ condition. To obtain reliable and quantifiable information, medical professionals perform seizure detection and subsequent analysis us...

متن کامل

P81: Detection of Epileptic Seizures Using EEG Signal Processing

Epilepsy is the most common brain diseases that cause many problems in the daily life of the patient. In most attempts to automatic detection, the attack used an EEG. In this paper, The complete data set consists of five sets recorded from normal and epileptic patients. Each set containing 100 single-channel EEG segments. Here we used first and last sets (A and E). Set A consisted of segments r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012